Residual Networks

Welcome to the second assignment of this week! You will learn how to build very deep convolutional networks, using Residual Networks (ResNets). In theory, very deep networks can represent very complex functions; but in practice, they are hard to train. Residual Networks, introduced by He et al., allow you to train much deeper networks than were previously practically feasible.

In this assignment, you will:

  • Implement the basic building blocks of ResNets.
  • Put together these building blocks to implement and train a state-of-the-art neural network for image classification.

This assignment will be done in Keras.

Before jumping into the problem, let's run the cell below to load the required packages.

In [1]:
import numpy as np
from keras import layers
from keras.layers import Input, Add, Dense, Activation, ZeroPadding2D, BatchNormalization, Flatten, Conv2D, AveragePooling2D, MaxPooling2D, GlobalMaxPooling2D
from keras.models import Model, load_model
from keras.preprocessing import image
from keras.utils import layer_utils
from keras.utils.data_utils import get_file
from keras.applications.imagenet_utils import preprocess_input
import pydot
from IPython.display import SVG
from keras.utils.vis_utils import model_to_dot
from keras.utils import plot_model
from resnets_utils import *
from keras.initializers import glorot_uniform
import scipy.misc
from matplotlib.pyplot import imshow
%matplotlib inline

import keras.backend as K
K.set_image_data_format('channels_last')
K.set_learning_phase(1)
Using TensorFlow backend.

1 - The problem of very deep neural networks

Last week, you built your first convolutional neural network. In recent years, neural networks have become deeper, with state-of-the-art networks going from just a few layers (e.g., AlexNet) to over a hundred layers.

The main benefit of a very deep network is that it can represent very complex functions. It can also learn features at many different levels of abstraction, from edges (at the lower layers) to very complex features (at the deeper layers). However, using a deeper network doesn't always help. A huge barrier to training them is vanishing gradients: very deep networks often have a gradient signal that goes to zero quickly, thus making gradient descent unbearably slow. More specifically, during gradient descent, as you backprop from the final layer back to the first layer, you are multiplying by the weight matrix on each step, and thus the gradient can decrease exponentially quickly to zero (or, in rare cases, grow exponentially quickly and "explode" to take very large values).

During training, you might therefore see the magnitude (or norm) of the gradient for the earlier layers descrease to zero very rapidly as training proceeds:

**Figure 1** : **Vanishing gradient**
The speed of learning decreases very rapidly for the early layers as the network trains

You are now going to solve this problem by building a Residual Network!

2 - Building a Residual Network

In ResNets, a "shortcut" or a "skip connection" allows the gradient to be directly backpropagated to earlier layers:

**Figure 2** : A ResNet block showing a **skip-connection**

The image on the left shows the "main path" through the network. The image on the right adds a shortcut to the main path. By stacking these ResNet blocks on top of each other, you can form a very deep network.

We also saw in lecture that having ResNet blocks with the shortcut also makes it very easy for one of the blocks to learn an identity function. This means that you can stack on additional ResNet blocks with little risk of harming training set performance. (There is also some evidence that the ease of learning an identity function--even more than skip connections helping with vanishing gradients--accounts for ResNets' remarkable performance.)

Two main types of blocks are used in a ResNet, depending mainly on whether the input/output dimensions are same or different. You are going to implement both of them.

2.1 - The identity block

The identity block is the standard block used in ResNets, and corresponds to the case where the input activation (say $a^{[l]}$) has the same dimension as the output activation (say $a^{[l+2]}$). To flesh out the different steps of what happens in a ResNet's identity block, here is an alternative diagram showing the individual steps:

**Figure 3** : **Identity block.** Skip connection "skips over" 2 layers.

The upper path is the "shortcut path." The lower path is the "main path." In this diagram, we have also made explicit the CONV2D and ReLU steps in each layer. To speed up training we have also added a BatchNorm step. Don't worry about this being complicated to implement--you'll see that BatchNorm is just one line of code in Keras!

In this exercise, you'll actually implement a slightly more powerful version of this identity block, in which the skip connection "skips over" 3 hidden layers rather than 2 layers. It looks like this:

**Figure 4** : **Identity block.** Skip connection "skips over" 3 layers.

Here're the individual steps.

First component of main path:

  • The first CONV2D has $F_1$ filters of shape (1,1) and a stride of (1,1). Its padding is "valid" and its name should be conv_name_base + '2a'. Use 0 as the seed for the random initialization.
  • The first BatchNorm is normalizing the channels axis. Its name should be bn_name_base + '2a'.
  • Then apply the ReLU activation function. This has no name and no hyperparameters.

Second component of main path:

  • The second CONV2D has $F_2$ filters of shape $(f,f)$ and a stride of (1,1). Its padding is "same" and its name should be conv_name_base + '2b'. Use 0 as the seed for the random initialization.
  • The second BatchNorm is normalizing the channels axis. Its name should be bn_name_base + '2b'.
  • Then apply the ReLU activation function. This has no name and no hyperparameters.

Third component of main path:

  • The third CONV2D has $F_3$ filters of shape (1,1) and a stride of (1,1). Its padding is "valid" and its name should be conv_name_base + '2c'. Use 0 as the seed for the random initialization.
  • The third BatchNorm is normalizing the channels axis. Its name should be bn_name_base + '2c'. Note that there is no ReLU activation function in this component.

Final step:

  • The shortcut and the input are added together.
  • Then apply the ReLU activation function. This has no name and no hyperparameters.

Exercise: Implement the ResNet identity block. We have implemented the first component of the main path. Please read over this carefully to make sure you understand what it is doing. You should implement the rest.

  • To implement the Conv2D step: See reference
  • To implement BatchNorm: See reference (axis: Integer, the axis that should be normalized (typically the channels axis))
  • For the activation, use: Activation('relu')(X)
  • To add the value passed forward by the shortcut: See reference
In [12]:
# GRADED FUNCTION: identity_block

def identity_block(X, f, filters, stage, block):
    """
    Implementation of the identity block as defined in Figure 3
    
    Arguments:
    X -- input tensor of shape (m, n_H_prev, n_W_prev, n_C_prev)
    f -- integer, specifying the shape of the middle CONV's window for the main path
    filters -- python list of integers, defining the number of filters in the CONV layers of the main path
    stage -- integer, used to name the layers, depending on their position in the network
    block -- string/character, used to name the layers, depending on their position in the network
    
    Returns:
    X -- output of the identity block, tensor of shape (n_H, n_W, n_C)
    """
    
    # defining name basis
    conv_name_base = 'res' + str(stage) + block + '_branch'
    bn_name_base = 'bn' + str(stage) + block + '_branch'
    
    # Retrieve Filters
    F1, F2, F3 = filters
    
    # Save the input value. You'll need this later to add back to the main path. 
    X_shortcut = X
    
    # First component of main path
    X = Conv2D(filters = F1, kernel_size = (1, 1), strides = (1,1), padding = 'valid', name = conv_name_base + '2a', kernel_initializer = glorot_uniform(seed=0))(X)
    X = BatchNormalization(axis = 3, name = bn_name_base + '2a')(X)
    X = Activation('relu')(X)
    
    ### START CODE HERE ###
    
    # Second component of main path (≈3 lines)
    X = Conv2D(filters = F2, kernel_size = (f,f), strides = (1,1), padding = 'same', name = conv_name_base + '2b', kernel_initializer = glorot_uniform(seed=0))(X)
    X = BatchNormalization(axis = 3, name = bn_name_base + '2b')(X)
    X = Activation('relu')(X)

    # Third component of main path (≈2 lines)
    X = Conv2D(filters = F3, kernel_size = (1, 1), strides = (1,1), padding = 'valid', name = conv_name_base + '2c', kernel_initializer = glorot_uniform(seed=0))(X)
    X = BatchNormalization(axis = 3, name = bn_name_base + '2c')(X)

    # Final step: Add shortcut value to main path, and pass it through a RELU activation (≈2 lines)
    X = layers.Add()([X, X_shortcut])
    X = Activation('relu')(X)
    
    ### END CODE HERE ###
    
    return X
In [13]:
tf.reset_default_graph()

with tf.Session() as test:
    np.random.seed(1)
    A_prev = tf.placeholder("float", [3, 4, 4, 6])
    X = np.random.randn(3, 4, 4, 6)
    A = identity_block(A_prev, f = 2, filters = [2, 4, 6], stage = 1, block = 'a')
    test.run(tf.global_variables_initializer())
    out = test.run([A], feed_dict={A_prev: X, K.learning_phase(): 0})
    print("out = " + str(out[0][1][1][0]))
out = [ 0.94822985  0.          1.16101444  2.747859    0.          1.36677003]

Expected Output:

**out** [ 0.94822985 0. 1.16101444 2.747859 0. 1.36677003]

2.2 - The convolutional block

You've implemented the ResNet identity block. Next, the ResNet "convolutional block" is the other type of block. You can use this type of block when the input and output dimensions don't match up. The difference with the identity block is that there is a CONV2D layer in the shortcut path:

**Figure 4** : **Convolutional block**

The CONV2D layer in the shortcut path is used to resize the input $x$ to a different dimension, so that the dimensions match up in the final addition needed to add the shortcut value back to the main path. (This plays a similar role as the matrix $W_s$ discussed in lecture.) For example, to reduce the activation dimensions's height and width by a factor of 2, you can use a 1x1 convolution with a stride of 2. The CONV2D layer on the shortcut path does not use any non-linear activation function. Its main role is to just apply a (learned) linear function that reduces the dimension of the input, so that the dimensions match up for the later addition step.

The details of the convolutional block are as follows.

First component of main path:

  • The first CONV2D has $F_1$ filters of shape (1,1) and a stride of (s,s). Its padding is "valid" and its name should be conv_name_base + '2a'.
  • The first BatchNorm is normalizing the channels axis. Its name should be bn_name_base + '2a'.
  • Then apply the ReLU activation function. This has no name and no hyperparameters.

Second component of main path:

  • The second CONV2D has $F_2$ filters of (f,f) and a stride of (1,1). Its padding is "same" and it's name should be conv_name_base + '2b'.
  • The second BatchNorm is normalizing the channels axis. Its name should be bn_name_base + '2b'.
  • Then apply the ReLU activation function. This has no name and no hyperparameters.

Third component of main path:

  • The third CONV2D has $F_3$ filters of (1,1) and a stride of (1,1). Its padding is "valid" and it's name should be conv_name_base + '2c'.
  • The third BatchNorm is normalizing the channels axis. Its name should be bn_name_base + '2c'. Note that there is no ReLU activation function in this component.

Shortcut path:

  • The CONV2D has $F_3$ filters of shape (1,1) and a stride of (s,s). Its padding is "valid" and its name should be conv_name_base + '1'.
  • The BatchNorm is normalizing the channels axis. Its name should be bn_name_base + '1'.

Final step:

  • The shortcut and the main path values are added together.
  • Then apply the ReLU activation function. This has no name and no hyperparameters.

Exercise: Implement the convolutional block. We have implemented the first component of the main path; you should implement the rest. As before, always use 0 as the seed for the random initialization, to ensure consistency with our grader.

In [24]:
# GRADED FUNCTION: convolutional_block

def convolutional_block(X, f, filters, stage, block, s = 2):
    """
    Implementation of the convolutional block as defined in Figure 4
    
    Arguments:
    X -- input tensor of shape (m, n_H_prev, n_W_prev, n_C_prev)
    f -- integer, specifying the shape of the middle CONV's window for the main path
    filters -- python list of integers, defining the number of filters in the CONV layers of the main path
    stage -- integer, used to name the layers, depending on their position in the network
    block -- string/character, used to name the layers, depending on their position in the network
    s -- Integer, specifying the stride to be used
    
    Returns:
    X -- output of the convolutional block, tensor of shape (n_H, n_W, n_C)
    """
    
    # defining name basis
    conv_name_base = 'res' + str(stage) + block + '_branch'
    bn_name_base = 'bn' + str(stage) + block + '_branch'
    
    # Retrieve Filters
    F1, F2, F3 = filters
    
    # Save the input value
    X_shortcut = X


    ##### MAIN PATH #####
    # First component of main path 
    X = Conv2D(F1, (1, 1), strides = (s,s), name = conv_name_base + '2a', kernel_initializer = glorot_uniform(seed=0))(X)
    X = BatchNormalization(axis = 3, name = bn_name_base + '2a')(X)
    X = Activation('relu')(X)
    
    ### START CODE HERE ###

    # Second component of main path (≈3 lines)
    X = Conv2D(F2, (f, f), strides = (1,1), padding = 'same', name = conv_name_base + '2b', kernel_initializer = glorot_uniform(seed=0))(X)
    X = BatchNormalization(axis = 3, name = bn_name_base + '2b')(X)
    X = Activation('relu')(X)

    # Third component of main path (≈2 lines)
    X = Conv2D(F3, (1, 1), strides = (1,1), name = conv_name_base + '2c', kernel_initializer = glorot_uniform(seed=0))(X)
    X = BatchNormalization(axis = 3, name = bn_name_base + '2c')(X)

    ##### SHORTCUT PATH #### (≈2 lines)
    X_shortcut = Conv2D(F3, (1, 1), strides = (s,s), name = conv_name_base + '1', kernel_initializer = glorot_uniform(seed=0))(X_shortcut)
    X_shortcut = BatchNormalization(axis = 3, name = bn_name_base + '1')(X_shortcut)

    # Final step: Add shortcut value to main path, and pass it through a RELU activation (≈2 lines)
    X = layers.Add()([X, X_shortcut])
    X = Activation('relu')(X)
    
    ### END CODE HERE ###
    
    return X
In [25]:
tf.reset_default_graph()

with tf.Session() as test:
    np.random.seed(1)
    A_prev = tf.placeholder("float", [3, 4, 4, 6])
    X = np.random.randn(3, 4, 4, 6)
    A = convolutional_block(A_prev, f = 2, filters = [2, 4, 6], stage = 1, block = 'a')
    test.run(tf.global_variables_initializer())
    out = test.run([A], feed_dict={A_prev: X, K.learning_phase(): 0})
    print("out = " + str(out[0][1][1][0]))
out = [ 0.09018463  1.23489773  0.46822017  0.0367176   0.          0.65516603]

Expected Output:

**out** [ 0.09018463 1.23489773 0.46822017 0.0367176 0. 0.65516603]

3 - Building your first ResNet model (50 layers)

You now have the necessary blocks to build a very deep ResNet. The following figure describes in detail the architecture of this neural network. "ID BLOCK" in the diagram stands for "Identity block," and "ID BLOCK x3" means you should stack 3 identity blocks together.

**Figure 5** : **ResNet-50 model**

The details of this ResNet-50 model are:

  • Zero-padding pads the input with a pad of (3,3)
  • Stage 1:
    • The 2D Convolution has 64 filters of shape (7,7) and uses a stride of (2,2). Its name is "conv1".
    • BatchNorm is applied to the channels axis of the input.
    • MaxPooling uses a (3,3) window and a (2,2) stride.
  • Stage 2:
    • The convolutional block uses three set of filters of size [64,64,256], "f" is 3, "s" is 1 and the block is "a".
    • The 2 identity blocks use three set of filters of size [64,64,256], "f" is 3 and the blocks are "b" and "c".
  • Stage 3:
    • The convolutional block uses three set of filters of size [128,128,512], "f" is 3, "s" is 2 and the block is "a".
    • The 3 identity blocks use three set of filters of size [128,128,512], "f" is 3 and the blocks are "b", "c" and "d".
  • Stage 4:
    • The convolutional block uses three set of filters of size [256, 256, 1024], "f" is 3, "s" is 2 and the block is "a".
    • The 5 identity blocks use three set of filters of size [256, 256, 1024], "f" is 3 and the blocks are "b", "c", "d", "e" and "f".
  • Stage 5:
    • The convolutional block uses three set of filters of size [512, 512, 2048], "f" is 3, "s" is 2 and the block is "a".
    • The 2 identity blocks use three set of filters of size [256, 256, 2048], "f" is 3 and the blocks are "b" and "c".
  • The 2D Average Pooling uses a window of shape (2,2) and its name is "avg_pool".
  • The flatten doesn't have any hyperparameters or name.
  • The Fully Connected (Dense) layer reduces its input to the number of classes using a softmax activation. Its name should be 'fc' + str(classes).

Exercise: Implement the ResNet with 50 layers described in the figure above. We have implemented Stages 1 and 2. Please implement the rest. (The syntax for implementing Stages 3-5 should be quite similar to that of Stage 2.) Make sure you follow the naming convention in the text above.

You'll need to use this function:

Here're some other functions we used in the code below:

In [26]:
# GRADED FUNCTION: ResNet50

def ResNet50(input_shape = (64, 64, 3), classes = 6):
    """
    Implementation of the popular ResNet50 the following architecture:
    CONV2D -> BATCHNORM -> RELU -> MAXPOOL -> CONVBLOCK -> IDBLOCK*2 -> CONVBLOCK -> IDBLOCK*3
    -> CONVBLOCK -> IDBLOCK*5 -> CONVBLOCK -> IDBLOCK*2 -> AVGPOOL -> TOPLAYER

    Arguments:
    input_shape -- shape of the images of the dataset
    classes -- integer, number of classes

    Returns:
    model -- a Model() instance in Keras
    """
    
    # Define the input as a tensor with shape input_shape
    X_input = Input(input_shape)

    
    # Zero-Padding
    X = ZeroPadding2D((3, 3))(X_input)
    
    # Stage 1
    X = Conv2D(64, (7, 7), strides = (2, 2), name = 'conv1', kernel_initializer = glorot_uniform(seed=0))(X)
    X = BatchNormalization(axis = 3, name = 'bn_conv1')(X)
    X = Activation('relu')(X)
    X = MaxPooling2D((3, 3), strides=(2, 2))(X)

    # Stage 2
    X = convolutional_block(X, f = 3, filters = [64, 64, 256], stage = 2, block='a', s = 1)
    X = identity_block(X, 3, [64, 64, 256], stage=2, block='b')
    X = identity_block(X, 3, [64, 64, 256], stage=2, block='c')

    ### START CODE HERE ###

    # Stage 3 (≈4 lines)
    X = convolutional_block(X, f = 3, filters = [128, 128, 512], stage = 3, block='a', s = 2)
    X = identity_block(X, 3, [128, 128, 512], stage=3, block='b')
    X = identity_block(X, 3, [128, 128, 512], stage=3, block='c')
    X = identity_block(X, 3, [128, 128, 512], stage=3, block='d')

    # Stage 4 (≈6 lines)
    X = convolutional_block(X, f = 3, filters = [256, 256, 1024], stage = 4, block='a', s = 2)
    X = identity_block(X, 3, [256, 256, 1024], stage=4, block='b')
    X = identity_block(X, 3, [256, 256, 1024], stage=4, block='c')
    X = identity_block(X, 3, [256, 256, 1024], stage=4, block='d')
    X = identity_block(X, 3, [256, 256, 1024], stage=4, block='e')
    X = identity_block(X, 3, [256, 256, 1024], stage=4, block='f')

    # Stage 5 (≈3 lines)
    X = convolutional_block(X, f = 3, filters = [512, 512, 2048], stage = 5, block='a', s = 2)
    X = identity_block(X, 3, [512, 512, 2048], stage=5, block='b')
    X = identity_block(X, 3, [512, 512, 2048], stage=5, block='c')

    # AVGPOOL (≈1 line). Use "X = AveragePooling2D(...)(X)"
    X = AveragePooling2D((2,2), name='avg_pool')(X)
    
    ### END CODE HERE ###

    # output layer
    X = Flatten()(X)
    X = Dense(classes, activation='softmax', name='fc' + str(classes), kernel_initializer = glorot_uniform(seed=0))(X)
    
    
    # Create model
    model = Model(inputs = X_input, outputs = X, name='ResNet50')

    return model

Run the following code to build the model's graph. If your implementation is not correct you will know it by checking your accuracy when running model.fit(...) below.

In [27]:
model = ResNet50(input_shape = (64, 64, 3), classes = 6)

As seen in the Keras Tutorial Notebook, prior training a model, you need to configure the learning process by compiling the model.

In [28]:
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])

The model is now ready to be trained. The only thing you need is a dataset.

Let's load the SIGNS Dataset.

**Figure 6** : **SIGNS dataset**
In [29]:
X_train_orig, Y_train_orig, X_test_orig, Y_test_orig, classes = load_dataset()

# Normalize image vectors
X_train = X_train_orig/255.
X_test = X_test_orig/255.

# Convert training and test labels to one hot matrices
Y_train = convert_to_one_hot(Y_train_orig, 6).T
Y_test = convert_to_one_hot(Y_test_orig, 6).T

print ("number of training examples = " + str(X_train.shape[0]))
print ("number of test examples = " + str(X_test.shape[0]))
print ("X_train shape: " + str(X_train.shape))
print ("Y_train shape: " + str(Y_train.shape))
print ("X_test shape: " + str(X_test.shape))
print ("Y_test shape: " + str(Y_test.shape))
number of training examples = 1080
number of test examples = 120
X_train shape: (1080, 64, 64, 3)
Y_train shape: (1080, 6)
X_test shape: (120, 64, 64, 3)
Y_test shape: (120, 6)

Run the following cell to train your model on 2 epochs with a batch size of 32. On a CPU it should take you around 5min per epoch.

In [30]:
model.fit(X_train, Y_train, epochs = 2, batch_size = 32)
Epoch 1/2
1080/1080 [==============================] - 238s - loss: 3.1064 - acc: 0.2370   
Epoch 2/2
1080/1080 [==============================] - 256s - loss: 2.6301 - acc: 0.2954   
Out[30]:
<keras.callbacks.History at 0x7f2c62ca6518>

Expected Output:

** Epoch 1/2** loss: between 1 and 5, acc: between 0.2 and 0.5, although your results can be different from ours.
** Epoch 2/2** loss: between 1 and 5, acc: between 0.2 and 0.5, you should see your loss decreasing and the accuracy increasing.

Let's see how this model (trained on only two epochs) performs on the test set.

In [37]:
preds = model.evaluate(X_test, Y_test)
print ("Loss = " + str(preds[0]))
print ("Test Accuracy = " + str(preds[1]))
120/120 [==============================] - 8s     
Loss = 0.530178320408
Test Accuracy = 0.866666662693

Expected Output:

**Test Accuracy** between 0.16 and 0.25

For the purpose of this assignment, we've asked you to train the model only for two epochs. You can see that it achieves poor performances. Please go ahead and submit your assignment; to check correctness, the online grader will run your code only for a small number of epochs as well.

After you have finished this official (graded) part of this assignment, you can also optionally train the ResNet for more iterations, if you want. We get a lot better performance when we train for ~20 epochs, but this will take more than an hour when training on a CPU.

Using a GPU, we've trained our own ResNet50 model's weights on the SIGNS dataset. You can load and run our trained model on the test set in the cells below. It may take ≈1min to load the model.

In [32]:
model = load_model('ResNet50.h5') 
In [33]:
preds = model.evaluate(X_test, Y_test)
print ("Loss = " + str(preds[0]))
print ("Test Accuracy = " + str(preds[1]))
120/120 [==============================] - 11s    
Loss = 0.530178320408
Test Accuracy = 0.866666662693

ResNet50 is a powerful model for image classification when it is trained for an adequate number of iterations. We hope you can use what you've learnt and apply it to your own classification problem to perform state-of-the-art accuracy.

Congratulations on finishing this assignment! You've now implemented a state-of-the-art image classification system!

4 - Test on your own image (Optional/Ungraded)

If you wish, you can also take a picture of your own hand and see the output of the model. To do this:

1. Click on "File" in the upper bar of this notebook, then click "Open" to go on your Coursera Hub.
2. Add your image to this Jupyter Notebook's directory, in the "images" folder
3. Write your image's name in the following code
4. Run the code and check if the algorithm is right! 
In [34]:
img_path = 'images/my_image.jpg'
img = image.load_img(img_path, target_size=(64, 64))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
print('Input image shape:', x.shape)
my_image = scipy.misc.imread(img_path)
imshow(my_image)
print("class prediction vector [p(0), p(1), p(2), p(3), p(4), p(5)] = ")
print(model.predict(x))
Input image shape: (1, 64, 64, 3)
class prediction vector [p(0), p(1), p(2), p(3), p(4), p(5)] = 
[[ 1.  0.  0.  0.  0.  0.]]

You can also print a summary of your model by running the following code.

In [35]:
model.summary()
____________________________________________________________________________________________________
Layer (type)                     Output Shape          Param #     Connected to                     
====================================================================================================
input_1 (InputLayer)             (None, 64, 64, 3)     0                                            
____________________________________________________________________________________________________
zero_padding2d_1 (ZeroPadding2D) (None, 70, 70, 3)     0           input_1[0][0]                    
____________________________________________________________________________________________________
conv1 (Conv2D)                   (None, 32, 32, 64)    9472        zero_padding2d_1[0][0]           
____________________________________________________________________________________________________
bn_conv1 (BatchNormalization)    (None, 32, 32, 64)    256         conv1[0][0]                      
____________________________________________________________________________________________________
activation_4 (Activation)        (None, 32, 32, 64)    0           bn_conv1[0][0]                   
____________________________________________________________________________________________________
max_pooling2d_1 (MaxPooling2D)   (None, 15, 15, 64)    0           activation_4[0][0]               
____________________________________________________________________________________________________
res2a_branch2a (Conv2D)          (None, 15, 15, 64)    4160        max_pooling2d_1[0][0]            
____________________________________________________________________________________________________
bn2a_branch2a (BatchNormalizatio (None, 15, 15, 64)    256         res2a_branch2a[0][0]             
____________________________________________________________________________________________________
activation_5 (Activation)        (None, 15, 15, 64)    0           bn2a_branch2a[0][0]              
____________________________________________________________________________________________________
res2a_branch2b (Conv2D)          (None, 15, 15, 64)    36928       activation_5[0][0]               
____________________________________________________________________________________________________
bn2a_branch2b (BatchNormalizatio (None, 15, 15, 64)    256         res2a_branch2b[0][0]             
____________________________________________________________________________________________________
activation_6 (Activation)        (None, 15, 15, 64)    0           bn2a_branch2b[0][0]              
____________________________________________________________________________________________________
res2a_branch2c (Conv2D)          (None, 15, 15, 256)   16640       activation_6[0][0]               
____________________________________________________________________________________________________
res2a_branch1 (Conv2D)           (None, 15, 15, 256)   16640       max_pooling2d_1[0][0]            
____________________________________________________________________________________________________
bn2a_branch2c (BatchNormalizatio (None, 15, 15, 256)   1024        res2a_branch2c[0][0]             
____________________________________________________________________________________________________
bn2a_branch1 (BatchNormalization (None, 15, 15, 256)   1024        res2a_branch1[0][0]              
____________________________________________________________________________________________________
add_2 (Add)                      (None, 15, 15, 256)   0           bn2a_branch2c[0][0]              
                                                                   bn2a_branch1[0][0]               
____________________________________________________________________________________________________
activation_7 (Activation)        (None, 15, 15, 256)   0           add_2[0][0]                      
____________________________________________________________________________________________________
res2b_branch2a (Conv2D)          (None, 15, 15, 64)    16448       activation_7[0][0]               
____________________________________________________________________________________________________
bn2b_branch2a (BatchNormalizatio (None, 15, 15, 64)    256         res2b_branch2a[0][0]             
____________________________________________________________________________________________________
activation_8 (Activation)        (None, 15, 15, 64)    0           bn2b_branch2a[0][0]              
____________________________________________________________________________________________________
res2b_branch2b (Conv2D)          (None, 15, 15, 64)    36928       activation_8[0][0]               
____________________________________________________________________________________________________
bn2b_branch2b (BatchNormalizatio (None, 15, 15, 64)    256         res2b_branch2b[0][0]             
____________________________________________________________________________________________________
activation_9 (Activation)        (None, 15, 15, 64)    0           bn2b_branch2b[0][0]              
____________________________________________________________________________________________________
res2b_branch2c (Conv2D)          (None, 15, 15, 256)   16640       activation_9[0][0]               
____________________________________________________________________________________________________
bn2b_branch2c (BatchNormalizatio (None, 15, 15, 256)   1024        res2b_branch2c[0][0]             
____________________________________________________________________________________________________
add_3 (Add)                      (None, 15, 15, 256)   0           bn2b_branch2c[0][0]              
                                                                   activation_7[0][0]               
____________________________________________________________________________________________________
activation_10 (Activation)       (None, 15, 15, 256)   0           add_3[0][0]                      
____________________________________________________________________________________________________
res2c_branch2a (Conv2D)          (None, 15, 15, 64)    16448       activation_10[0][0]              
____________________________________________________________________________________________________
bn2c_branch2a (BatchNormalizatio (None, 15, 15, 64)    256         res2c_branch2a[0][0]             
____________________________________________________________________________________________________
activation_11 (Activation)       (None, 15, 15, 64)    0           bn2c_branch2a[0][0]              
____________________________________________________________________________________________________
res2c_branch2b (Conv2D)          (None, 15, 15, 64)    36928       activation_11[0][0]              
____________________________________________________________________________________________________
bn2c_branch2b (BatchNormalizatio (None, 15, 15, 64)    256         res2c_branch2b[0][0]             
____________________________________________________________________________________________________
activation_12 (Activation)       (None, 15, 15, 64)    0           bn2c_branch2b[0][0]              
____________________________________________________________________________________________________
res2c_branch2c (Conv2D)          (None, 15, 15, 256)   16640       activation_12[0][0]              
____________________________________________________________________________________________________
bn2c_branch2c (BatchNormalizatio (None, 15, 15, 256)   1024        res2c_branch2c[0][0]             
____________________________________________________________________________________________________
add_4 (Add)                      (None, 15, 15, 256)   0           bn2c_branch2c[0][0]              
                                                                   activation_10[0][0]              
____________________________________________________________________________________________________
activation_13 (Activation)       (None, 15, 15, 256)   0           add_4[0][0]                      
____________________________________________________________________________________________________
res3a_branch2a (Conv2D)          (None, 8, 8, 128)     32896       activation_13[0][0]              
____________________________________________________________________________________________________
bn3a_branch2a (BatchNormalizatio (None, 8, 8, 128)     512         res3a_branch2a[0][0]             
____________________________________________________________________________________________________
activation_14 (Activation)       (None, 8, 8, 128)     0           bn3a_branch2a[0][0]              
____________________________________________________________________________________________________
res3a_branch2b (Conv2D)          (None, 8, 8, 128)     147584      activation_14[0][0]              
____________________________________________________________________________________________________
bn3a_branch2b (BatchNormalizatio (None, 8, 8, 128)     512         res3a_branch2b[0][0]             
____________________________________________________________________________________________________
activation_15 (Activation)       (None, 8, 8, 128)     0           bn3a_branch2b[0][0]              
____________________________________________________________________________________________________
res3a_branch2c (Conv2D)          (None, 8, 8, 512)     66048       activation_15[0][0]              
____________________________________________________________________________________________________
res3a_branch1 (Conv2D)           (None, 8, 8, 512)     131584      activation_13[0][0]              
____________________________________________________________________________________________________
bn3a_branch2c (BatchNormalizatio (None, 8, 8, 512)     2048        res3a_branch2c[0][0]             
____________________________________________________________________________________________________
bn3a_branch1 (BatchNormalization (None, 8, 8, 512)     2048        res3a_branch1[0][0]              
____________________________________________________________________________________________________
add_5 (Add)                      (None, 8, 8, 512)     0           bn3a_branch2c[0][0]              
                                                                   bn3a_branch1[0][0]               
____________________________________________________________________________________________________
activation_16 (Activation)       (None, 8, 8, 512)     0           add_5[0][0]                      
____________________________________________________________________________________________________
res3b_branch2a (Conv2D)          (None, 8, 8, 128)     65664       activation_16[0][0]              
____________________________________________________________________________________________________
bn3b_branch2a (BatchNormalizatio (None, 8, 8, 128)     512         res3b_branch2a[0][0]             
____________________________________________________________________________________________________
activation_17 (Activation)       (None, 8, 8, 128)     0           bn3b_branch2a[0][0]              
____________________________________________________________________________________________________
res3b_branch2b (Conv2D)          (None, 8, 8, 128)     147584      activation_17[0][0]              
____________________________________________________________________________________________________
bn3b_branch2b (BatchNormalizatio (None, 8, 8, 128)     512         res3b_branch2b[0][0]             
____________________________________________________________________________________________________
activation_18 (Activation)       (None, 8, 8, 128)     0           bn3b_branch2b[0][0]              
____________________________________________________________________________________________________
res3b_branch2c (Conv2D)          (None, 8, 8, 512)     66048       activation_18[0][0]              
____________________________________________________________________________________________________
bn3b_branch2c (BatchNormalizatio (None, 8, 8, 512)     2048        res3b_branch2c[0][0]             
____________________________________________________________________________________________________
add_6 (Add)                      (None, 8, 8, 512)     0           bn3b_branch2c[0][0]              
                                                                   activation_16[0][0]              
____________________________________________________________________________________________________
activation_19 (Activation)       (None, 8, 8, 512)     0           add_6[0][0]                      
____________________________________________________________________________________________________
res3c_branch2a (Conv2D)          (None, 8, 8, 128)     65664       activation_19[0][0]              
____________________________________________________________________________________________________
bn3c_branch2a (BatchNormalizatio (None, 8, 8, 128)     512         res3c_branch2a[0][0]             
____________________________________________________________________________________________________
activation_20 (Activation)       (None, 8, 8, 128)     0           bn3c_branch2a[0][0]              
____________________________________________________________________________________________________
res3c_branch2b (Conv2D)          (None, 8, 8, 128)     147584      activation_20[0][0]              
____________________________________________________________________________________________________
bn3c_branch2b (BatchNormalizatio (None, 8, 8, 128)     512         res3c_branch2b[0][0]             
____________________________________________________________________________________________________
activation_21 (Activation)       (None, 8, 8, 128)     0           bn3c_branch2b[0][0]              
____________________________________________________________________________________________________
res3c_branch2c (Conv2D)          (None, 8, 8, 512)     66048       activation_21[0][0]              
____________________________________________________________________________________________________
bn3c_branch2c (BatchNormalizatio (None, 8, 8, 512)     2048        res3c_branch2c[0][0]             
____________________________________________________________________________________________________
add_7 (Add)                      (None, 8, 8, 512)     0           bn3c_branch2c[0][0]              
                                                                   activation_19[0][0]              
____________________________________________________________________________________________________
activation_22 (Activation)       (None, 8, 8, 512)     0           add_7[0][0]                      
____________________________________________________________________________________________________
res3d_branch2a (Conv2D)          (None, 8, 8, 128)     65664       activation_22[0][0]              
____________________________________________________________________________________________________
bn3d_branch2a (BatchNormalizatio (None, 8, 8, 128)     512         res3d_branch2a[0][0]             
____________________________________________________________________________________________________
activation_23 (Activation)       (None, 8, 8, 128)     0           bn3d_branch2a[0][0]              
____________________________________________________________________________________________________
res3d_branch2b (Conv2D)          (None, 8, 8, 128)     147584      activation_23[0][0]              
____________________________________________________________________________________________________
bn3d_branch2b (BatchNormalizatio (None, 8, 8, 128)     512         res3d_branch2b[0][0]             
____________________________________________________________________________________________________
activation_24 (Activation)       (None, 8, 8, 128)     0           bn3d_branch2b[0][0]              
____________________________________________________________________________________________________
res3d_branch2c (Conv2D)          (None, 8, 8, 512)     66048       activation_24[0][0]              
____________________________________________________________________________________________________
bn3d_branch2c (BatchNormalizatio (None, 8, 8, 512)     2048        res3d_branch2c[0][0]             
____________________________________________________________________________________________________
add_8 (Add)                      (None, 8, 8, 512)     0           bn3d_branch2c[0][0]              
                                                                   activation_22[0][0]              
____________________________________________________________________________________________________
activation_25 (Activation)       (None, 8, 8, 512)     0           add_8[0][0]                      
____________________________________________________________________________________________________
res4a_branch2a (Conv2D)          (None, 4, 4, 256)     131328      activation_25[0][0]              
____________________________________________________________________________________________________
bn4a_branch2a (BatchNormalizatio (None, 4, 4, 256)     1024        res4a_branch2a[0][0]             
____________________________________________________________________________________________________
activation_26 (Activation)       (None, 4, 4, 256)     0           bn4a_branch2a[0][0]              
____________________________________________________________________________________________________
res4a_branch2b (Conv2D)          (None, 4, 4, 256)     590080      activation_26[0][0]              
____________________________________________________________________________________________________
bn4a_branch2b (BatchNormalizatio (None, 4, 4, 256)     1024        res4a_branch2b[0][0]             
____________________________________________________________________________________________________
activation_27 (Activation)       (None, 4, 4, 256)     0           bn4a_branch2b[0][0]              
____________________________________________________________________________________________________
res4a_branch2c (Conv2D)          (None, 4, 4, 1024)    263168      activation_27[0][0]              
____________________________________________________________________________________________________
res4a_branch1 (Conv2D)           (None, 4, 4, 1024)    525312      activation_25[0][0]              
____________________________________________________________________________________________________
bn4a_branch2c (BatchNormalizatio (None, 4, 4, 1024)    4096        res4a_branch2c[0][0]             
____________________________________________________________________________________________________
bn4a_branch1 (BatchNormalization (None, 4, 4, 1024)    4096        res4a_branch1[0][0]              
____________________________________________________________________________________________________
add_9 (Add)                      (None, 4, 4, 1024)    0           bn4a_branch2c[0][0]              
                                                                   bn4a_branch1[0][0]               
____________________________________________________________________________________________________
activation_28 (Activation)       (None, 4, 4, 1024)    0           add_9[0][0]                      
____________________________________________________________________________________________________
res4b_branch2a (Conv2D)          (None, 4, 4, 256)     262400      activation_28[0][0]              
____________________________________________________________________________________________________
bn4b_branch2a (BatchNormalizatio (None, 4, 4, 256)     1024        res4b_branch2a[0][0]             
____________________________________________________________________________________________________
activation_29 (Activation)       (None, 4, 4, 256)     0           bn4b_branch2a[0][0]              
____________________________________________________________________________________________________
res4b_branch2b (Conv2D)          (None, 4, 4, 256)     590080      activation_29[0][0]              
____________________________________________________________________________________________________
bn4b_branch2b (BatchNormalizatio (None, 4, 4, 256)     1024        res4b_branch2b[0][0]             
____________________________________________________________________________________________________
activation_30 (Activation)       (None, 4, 4, 256)     0           bn4b_branch2b[0][0]              
____________________________________________________________________________________________________
res4b_branch2c (Conv2D)          (None, 4, 4, 1024)    263168      activation_30[0][0]              
____________________________________________________________________________________________________
bn4b_branch2c (BatchNormalizatio (None, 4, 4, 1024)    4096        res4b_branch2c[0][0]             
____________________________________________________________________________________________________
add_10 (Add)                     (None, 4, 4, 1024)    0           bn4b_branch2c[0][0]              
                                                                   activation_28[0][0]              
____________________________________________________________________________________________________
activation_31 (Activation)       (None, 4, 4, 1024)    0           add_10[0][0]                     
____________________________________________________________________________________________________
res4c_branch2a (Conv2D)          (None, 4, 4, 256)     262400      activation_31[0][0]              
____________________________________________________________________________________________________
bn4c_branch2a (BatchNormalizatio (None, 4, 4, 256)     1024        res4c_branch2a[0][0]             
____________________________________________________________________________________________________
activation_32 (Activation)       (None, 4, 4, 256)     0           bn4c_branch2a[0][0]              
____________________________________________________________________________________________________
res4c_branch2b (Conv2D)          (None, 4, 4, 256)     590080      activation_32[0][0]              
____________________________________________________________________________________________________
bn4c_branch2b (BatchNormalizatio (None, 4, 4, 256)     1024        res4c_branch2b[0][0]             
____________________________________________________________________________________________________
activation_33 (Activation)       (None, 4, 4, 256)     0           bn4c_branch2b[0][0]              
____________________________________________________________________________________________________
res4c_branch2c (Conv2D)          (None, 4, 4, 1024)    263168      activation_33[0][0]              
____________________________________________________________________________________________________
bn4c_branch2c (BatchNormalizatio (None, 4, 4, 1024)    4096        res4c_branch2c[0][0]             
____________________________________________________________________________________________________
add_11 (Add)                     (None, 4, 4, 1024)    0           bn4c_branch2c[0][0]              
                                                                   activation_31[0][0]              
____________________________________________________________________________________________________
activation_34 (Activation)       (None, 4, 4, 1024)    0           add_11[0][0]                     
____________________________________________________________________________________________________
res4d_branch2a (Conv2D)          (None, 4, 4, 256)     262400      activation_34[0][0]              
____________________________________________________________________________________________________
bn4d_branch2a (BatchNormalizatio (None, 4, 4, 256)     1024        res4d_branch2a[0][0]             
____________________________________________________________________________________________________
activation_35 (Activation)       (None, 4, 4, 256)     0           bn4d_branch2a[0][0]              
____________________________________________________________________________________________________
res4d_branch2b (Conv2D)          (None, 4, 4, 256)     590080      activation_35[0][0]              
____________________________________________________________________________________________________
bn4d_branch2b (BatchNormalizatio (None, 4, 4, 256)     1024        res4d_branch2b[0][0]             
____________________________________________________________________________________________________
activation_36 (Activation)       (None, 4, 4, 256)     0           bn4d_branch2b[0][0]              
____________________________________________________________________________________________________
res4d_branch2c (Conv2D)          (None, 4, 4, 1024)    263168      activation_36[0][0]              
____________________________________________________________________________________________________
bn4d_branch2c (BatchNormalizatio (None, 4, 4, 1024)    4096        res4d_branch2c[0][0]             
____________________________________________________________________________________________________
add_12 (Add)                     (None, 4, 4, 1024)    0           bn4d_branch2c[0][0]              
                                                                   activation_34[0][0]              
____________________________________________________________________________________________________
activation_37 (Activation)       (None, 4, 4, 1024)    0           add_12[0][0]                     
____________________________________________________________________________________________________
res4e_branch2a (Conv2D)          (None, 4, 4, 256)     262400      activation_37[0][0]              
____________________________________________________________________________________________________
bn4e_branch2a (BatchNormalizatio (None, 4, 4, 256)     1024        res4e_branch2a[0][0]             
____________________________________________________________________________________________________
activation_38 (Activation)       (None, 4, 4, 256)     0           bn4e_branch2a[0][0]              
____________________________________________________________________________________________________
res4e_branch2b (Conv2D)          (None, 4, 4, 256)     590080      activation_38[0][0]              
____________________________________________________________________________________________________
bn4e_branch2b (BatchNormalizatio (None, 4, 4, 256)     1024        res4e_branch2b[0][0]             
____________________________________________________________________________________________________
activation_39 (Activation)       (None, 4, 4, 256)     0           bn4e_branch2b[0][0]              
____________________________________________________________________________________________________
res4e_branch2c (Conv2D)          (None, 4, 4, 1024)    263168      activation_39[0][0]              
____________________________________________________________________________________________________
bn4e_branch2c (BatchNormalizatio (None, 4, 4, 1024)    4096        res4e_branch2c[0][0]             
____________________________________________________________________________________________________
add_13 (Add)                     (None, 4, 4, 1024)    0           bn4e_branch2c[0][0]              
                                                                   activation_37[0][0]              
____________________________________________________________________________________________________
activation_40 (Activation)       (None, 4, 4, 1024)    0           add_13[0][0]                     
____________________________________________________________________________________________________
res4f_branch2a (Conv2D)          (None, 4, 4, 256)     262400      activation_40[0][0]              
____________________________________________________________________________________________________
bn4f_branch2a (BatchNormalizatio (None, 4, 4, 256)     1024        res4f_branch2a[0][0]             
____________________________________________________________________________________________________
activation_41 (Activation)       (None, 4, 4, 256)     0           bn4f_branch2a[0][0]              
____________________________________________________________________________________________________
res4f_branch2b (Conv2D)          (None, 4, 4, 256)     590080      activation_41[0][0]              
____________________________________________________________________________________________________
bn4f_branch2b (BatchNormalizatio (None, 4, 4, 256)     1024        res4f_branch2b[0][0]             
____________________________________________________________________________________________________
activation_42 (Activation)       (None, 4, 4, 256)     0           bn4f_branch2b[0][0]              
____________________________________________________________________________________________________
res4f_branch2c (Conv2D)          (None, 4, 4, 1024)    263168      activation_42[0][0]              
____________________________________________________________________________________________________
bn4f_branch2c (BatchNormalizatio (None, 4, 4, 1024)    4096        res4f_branch2c[0][0]             
____________________________________________________________________________________________________
add_14 (Add)                     (None, 4, 4, 1024)    0           bn4f_branch2c[0][0]              
                                                                   activation_40[0][0]              
____________________________________________________________________________________________________
activation_43 (Activation)       (None, 4, 4, 1024)    0           add_14[0][0]                     
____________________________________________________________________________________________________
res5a_branch2a (Conv2D)          (None, 2, 2, 512)     524800      activation_43[0][0]              
____________________________________________________________________________________________________
bn5a_branch2a (BatchNormalizatio (None, 2, 2, 512)     2048        res5a_branch2a[0][0]             
____________________________________________________________________________________________________
activation_44 (Activation)       (None, 2, 2, 512)     0           bn5a_branch2a[0][0]              
____________________________________________________________________________________________________
res5a_branch2b (Conv2D)          (None, 2, 2, 512)     2359808     activation_44[0][0]              
____________________________________________________________________________________________________
bn5a_branch2b (BatchNormalizatio (None, 2, 2, 512)     2048        res5a_branch2b[0][0]             
____________________________________________________________________________________________________
activation_45 (Activation)       (None, 2, 2, 512)     0           bn5a_branch2b[0][0]              
____________________________________________________________________________________________________
res5a_branch2c (Conv2D)          (None, 2, 2, 2048)    1050624     activation_45[0][0]              
____________________________________________________________________________________________________
res5a_branch1 (Conv2D)           (None, 2, 2, 2048)    2099200     activation_43[0][0]              
____________________________________________________________________________________________________
bn5a_branch2c (BatchNormalizatio (None, 2, 2, 2048)    8192        res5a_branch2c[0][0]             
____________________________________________________________________________________________________
bn5a_branch1 (BatchNormalization (None, 2, 2, 2048)    8192        res5a_branch1[0][0]              
____________________________________________________________________________________________________
add_15 (Add)                     (None, 2, 2, 2048)    0           bn5a_branch2c[0][0]              
                                                                   bn5a_branch1[0][0]               
____________________________________________________________________________________________________
activation_46 (Activation)       (None, 2, 2, 2048)    0           add_15[0][0]                     
____________________________________________________________________________________________________
res5b_branch2a (Conv2D)          (None, 2, 2, 512)     1049088     activation_46[0][0]              
____________________________________________________________________________________________________
bn5b_branch2a (BatchNormalizatio (None, 2, 2, 512)     2048        res5b_branch2a[0][0]             
____________________________________________________________________________________________________
activation_47 (Activation)       (None, 2, 2, 512)     0           bn5b_branch2a[0][0]              
____________________________________________________________________________________________________
res5b_branch2b (Conv2D)          (None, 2, 2, 512)     2359808     activation_47[0][0]              
____________________________________________________________________________________________________
bn5b_branch2b (BatchNormalizatio (None, 2, 2, 512)     2048        res5b_branch2b[0][0]             
____________________________________________________________________________________________________
activation_48 (Activation)       (None, 2, 2, 512)     0           bn5b_branch2b[0][0]              
____________________________________________________________________________________________________
res5b_branch2c (Conv2D)          (None, 2, 2, 2048)    1050624     activation_48[0][0]              
____________________________________________________________________________________________________
bn5b_branch2c (BatchNormalizatio (None, 2, 2, 2048)    8192        res5b_branch2c[0][0]             
____________________________________________________________________________________________________
add_16 (Add)                     (None, 2, 2, 2048)    0           bn5b_branch2c[0][0]              
                                                                   activation_46[0][0]              
____________________________________________________________________________________________________
activation_49 (Activation)       (None, 2, 2, 2048)    0           add_16[0][0]                     
____________________________________________________________________________________________________
res5c_branch2a (Conv2D)          (None, 2, 2, 512)     1049088     activation_49[0][0]              
____________________________________________________________________________________________________
bn5c_branch2a (BatchNormalizatio (None, 2, 2, 512)     2048        res5c_branch2a[0][0]             
____________________________________________________________________________________________________
activation_50 (Activation)       (None, 2, 2, 512)     0           bn5c_branch2a[0][0]              
____________________________________________________________________________________________________
res5c_branch2b (Conv2D)          (None, 2, 2, 512)     2359808     activation_50[0][0]              
____________________________________________________________________________________________________
bn5c_branch2b (BatchNormalizatio (None, 2, 2, 512)     2048        res5c_branch2b[0][0]             
____________________________________________________________________________________________________
activation_51 (Activation)       (None, 2, 2, 512)     0           bn5c_branch2b[0][0]              
____________________________________________________________________________________________________
res5c_branch2c (Conv2D)          (None, 2, 2, 2048)    1050624     activation_51[0][0]              
____________________________________________________________________________________________________
bn5c_branch2c (BatchNormalizatio (None, 2, 2, 2048)    8192        res5c_branch2c[0][0]             
____________________________________________________________________________________________________
add_17 (Add)                     (None, 2, 2, 2048)    0           bn5c_branch2c[0][0]              
                                                                   activation_49[0][0]              
____________________________________________________________________________________________________
activation_52 (Activation)       (None, 2, 2, 2048)    0           add_17[0][0]                     
____________________________________________________________________________________________________
avg_pool (AveragePooling2D)      (None, 1, 1, 2048)    0           activation_52[0][0]              
____________________________________________________________________________________________________
flatten_1 (Flatten)              (None, 2048)          0           avg_pool[0][0]                   
____________________________________________________________________________________________________
fc6 (Dense)                      (None, 6)             12294       flatten_1[0][0]                  
====================================================================================================
Total params: 23,600,006
Trainable params: 23,546,886
Non-trainable params: 53,120
____________________________________________________________________________________________________

Finally, run the code below to visualize your ResNet50. You can also download a .png picture of your model by going to "File -> Open...-> model.png".

In [36]:
plot_model(model, to_file='model.png')
SVG(model_to_dot(model).create(prog='dot', format='svg'))
Out[36]:
G 139828333973120 input_1: InputLayer 139828333973232 zero_padding2d_1: ZeroPadding2D 139828333973120->139828333973232 139828333973288 conv1: Conv2D 139828333973232->139828333973288 139828333973456 bn_conv1: BatchNormalization 139828333973288->139828333973456 139828334015544 activation_4: Activation 139828333973456->139828334015544 139828334015600 max_pooling2d_1: MaxPooling2D 139828334015544->139828334015600 139828334015768 res2a_branch2a: Conv2D 139828334015600->139828334015768 139828334017560 res2a_branch1: Conv2D 139828334015600->139828334017560 139828334016104 bn2a_branch2a: BatchNormalization 139828334015768->139828334016104 139828334016440 activation_5: Activation 139828334016104->139828334016440 139828334016496 res2a_branch2b: Conv2D 139828334016440->139828334016496 139828334016832 bn2a_branch2b: BatchNormalization 139828334016496->139828334016832 139828334017168 activation_6: Activation 139828334016832->139828334017168 139828334017224 res2a_branch2c: Conv2D 139828334017168->139828334017224 139828334017952 bn2a_branch2c: BatchNormalization 139828334017224->139828334017952 139828334018288 bn2a_branch1: BatchNormalization 139828334017560->139828334018288 139828721601224 add_2: Add 139828334017952->139828721601224 139828334018288->139828721601224 139828334059648 activation_7: Activation 139828721601224->139828334059648 139828334059704 res2b_branch2a: Conv2D 139828334059648->139828334059704 139828334061720 add_3: Add 139828334059648->139828334061720 139828334060040 bn2b_branch2a: BatchNormalization 139828334059704->139828334060040 139828334018512 activation_8: Activation 139828334060040->139828334018512 139828372247496 res2b_branch2b: Conv2D 139828334018512->139828372247496 139828334060656 bn2b_branch2b: BatchNormalization 139828372247496->139828334060656 139828334060992 activation_9: Activation 139828334060656->139828334060992 139828334061048 res2b_branch2c: Conv2D 139828334060992->139828334061048 139828334061384 bn2b_branch2c: BatchNormalization 139828334061048->139828334061384 139828334061384->139828334061720 139828334061776 activation_10: Activation 139828334061720->139828334061776 139828334061832 res2c_branch2a: Conv2D 139828334061776->139828334061832 139828333564256 add_4: Add 139828334061776->139828333564256 139828334062168 bn2c_branch2a: BatchNormalization 139828334061832->139828334062168 139828334062504 activation_11: Activation 139828334062168->139828334062504 139828334062560 res2c_branch2b: Conv2D 139828334062504->139828334062560 139828334062896 bn2c_branch2b: BatchNormalization 139828334062560->139828334062896 139828334063232 activation_12: Activation 139828334062896->139828334063232 139828334063288 res2c_branch2c: Conv2D 139828334063232->139828334063288 139828613266064 bn2c_branch2c: BatchNormalization 139828334063288->139828613266064 139828613266064->139828333564256 139828333564312 activation_13: Activation 139828333564256->139828333564312 139828333564368 res3a_branch2a: Conv2D 139828333564312->139828333564368 139828333566160 res3a_branch1: Conv2D 139828333564312->139828333566160 139828333564704 bn3a_branch2a: BatchNormalization 139828333564368->139828333564704 139828333565040 activation_14: Activation 139828333564704->139828333565040 139828333565096 res3a_branch2b: Conv2D 139828333565040->139828333565096 139828333565432 bn3a_branch2b: BatchNormalization 139828333565096->139828333565432 139828333565768 activation_15: Activation 139828333565432->139828333565768 139828333565824 res3a_branch2c: Conv2D 139828333565768->139828333565824 139828333566552 bn3a_branch2c: BatchNormalization 139828333565824->139828333566552 139828333566888 bn3a_branch1: BatchNormalization 139828333566160->139828333566888 139828333567168 add_5: Add 139828333566552->139828333567168 139828333566888->139828333567168 139828333567224 activation_16: Activation 139828333567168->139828333567224 139828333567280 res3b_branch2a: Conv2D 139828333567224->139828333567280 139828333589952 add_6: Add 139828333567224->139828333589952 139828333567616 bn3b_branch2a: BatchNormalization 139828333567280->139828333567616 139828724182880 activation_17: Activation 139828333567616->139828724182880 139828333588552 res3b_branch2b: Conv2D 139828724182880->139828333588552 139828333588888 bn3b_branch2b: BatchNormalization 139828333588552->139828333588888 139828333589224 activation_18: Activation 139828333588888->139828333589224 139828333589280 res3b_branch2c: Conv2D 139828333589224->139828333589280 139828333589616 bn3b_branch2c: BatchNormalization 139828333589280->139828333589616 139828333589616->139828333589952 139828333590008 activation_19: Activation 139828333589952->139828333590008 139828333590064 res3c_branch2a: Conv2D 139828333590008->139828333590064 139828333592192 add_7: Add 139828333590008->139828333592192 139828333590400 bn3c_branch2a: BatchNormalization 139828333590064->139828333590400 139828333590736 activation_20: Activation 139828333590400->139828333590736 139828333590792 res3c_branch2b: Conv2D 139828333590736->139828333590792 139828333591128 bn3c_branch2b: BatchNormalization 139828333590792->139828333591128 139828333591464 activation_21: Activation 139828333591128->139828333591464 139828333591520 res3c_branch2c: Conv2D 139828333591464->139828333591520 139828333591856 bn3c_branch2c: BatchNormalization 139828333591520->139828333591856 139828333591856->139828333592192 139828333592248 activation_22: Activation 139828333592192->139828333592248 139828333592304 res3d_branch2a: Conv2D 139828333592248->139828333592304 139828333623168 add_8: Add 139828333592248->139828333623168 139828333567952 bn3d_branch2a: BatchNormalization 139828333592304->139828333567952 139828333621712 activation_23: Activation 139828333567952->139828333621712 139828333621768 res3d_branch2b: Conv2D 139828333621712->139828333621768 139828333622104 bn3d_branch2b: BatchNormalization 139828333621768->139828333622104 139828333622440 activation_24: Activation 139828333622104->139828333622440 139828333622496 res3d_branch2c: Conv2D 139828333622440->139828333622496 139828333622832 bn3d_branch2c: BatchNormalization 139828333622496->139828333622832 139828333622832->139828333623168 139828333623224 activation_25: Activation 139828333623168->139828333623224 139828333623280 res4a_branch2a: Conv2D 139828333623224->139828333623280 139828333625072 res4a_branch1: Conv2D 139828333623224->139828333625072 139828333623616 bn4a_branch2a: BatchNormalization 139828333623280->139828333623616 139828333623952 activation_26: Activation 139828333623616->139828333623952 139828333624008 res4a_branch2b: Conv2D 139828333623952->139828333624008 139828333624344 bn4a_branch2b: BatchNormalization 139828333624008->139828333624344 139828333624680 activation_27: Activation 139828333624344->139828333624680 139828333624736 res4a_branch2c: Conv2D 139828333624680->139828333624736 139828333592472 bn4a_branch2c: BatchNormalization 139828333624736->139828333592472 139828333650440 bn4a_branch1: BatchNormalization 139828333625072->139828333650440 139828333650720 add_9: Add 139828333592472->139828333650720 139828333650440->139828333650720 139828333650776 activation_28: Activation 139828333650720->139828333650776 139828333650832 res4b_branch2a: Conv2D 139828333650776->139828333650832 139828333652960 add_10: Add 139828333650776->139828333652960 139828333651168 bn4b_branch2a: BatchNormalization 139828333650832->139828333651168 139828333651504 activation_29: Activation 139828333651168->139828333651504 139828333651560 res4b_branch2b: Conv2D 139828333651504->139828333651560 139828333651896 bn4b_branch2b: BatchNormalization 139828333651560->139828333651896 139828333652232 activation_30: Activation 139828333651896->139828333652232 139828333652288 res4b_branch2c: Conv2D 139828333652232->139828333652288 139828333652624 bn4b_branch2c: BatchNormalization 139828333652288->139828333652624 139828333652624->139828333652960 139828333653016 activation_31: Activation 139828333652960->139828333653016 139828333653072 res4c_branch2a: Conv2D 139828333653016->139828333653072 139828333683936 add_11: Add 139828333653016->139828333683936 139828333653408 bn4c_branch2a: BatchNormalization 139828333653072->139828333653408 139828333653744 activation_32: Activation 139828333653408->139828333653744 139828333653800 res4c_branch2b: Conv2D 139828333653744->139828333653800 139828333625296 bn4c_branch2b: BatchNormalization 139828333653800->139828333625296 139828333683208 activation_33: Activation 139828333625296->139828333683208 139828333683264 res4c_branch2c: Conv2D 139828333683208->139828333683264 139828333683600 bn4c_branch2c: BatchNormalization 139828333683264->139828333683600 139828333683600->139828333683936 139828333683992 activation_34: Activation 139828333683936->139828333683992 139828333684048 res4d_branch2a: Conv2D 139828333683992->139828333684048 139828333686176 add_12: Add 139828333683992->139828333686176 139828333684384 bn4d_branch2a: BatchNormalization 139828333684048->139828333684384 139828333684720 activation_35: Activation 139828333684384->139828333684720 139828333684776 res4d_branch2b: Conv2D 139828333684720->139828333684776 139828333685112 bn4d_branch2b: BatchNormalization 139828333684776->139828333685112 139828333685448 activation_36: Activation 139828333685112->139828333685448 139828333685504 res4d_branch2c: Conv2D 139828333685448->139828333685504 139828333685840 bn4d_branch2c: BatchNormalization 139828333685504->139828333685840 139828333685840->139828333686176 139828333686232 activation_37: Activation 139828333686176->139828333686232 139828333686288 res4e_branch2a: Conv2D 139828333686232->139828333686288 139828333713056 add_13: Add 139828333686232->139828333713056 139828333686624 bn4e_branch2a: BatchNormalization 139828333686288->139828333686624 139828333653968 activation_38: Activation 139828333686624->139828333653968 139828333711656 res4e_branch2b: Conv2D 139828333653968->139828333711656 139828333711992 bn4e_branch2b: BatchNormalization 139828333711656->139828333711992 139828333712328 activation_39: Activation 139828333711992->139828333712328 139828333712384 res4e_branch2c: Conv2D 139828333712328->139828333712384 139828333712720 bn4e_branch2c: BatchNormalization 139828333712384->139828333712720 139828333712720->139828333713056 139828333713112 activation_40: Activation 139828333713056->139828333713112 139828333713168 res4f_branch2a: Conv2D 139828333713112->139828333713168 139828333715296 add_14: Add 139828333713112->139828333715296 139828333713504 bn4f_branch2a: BatchNormalization 139828333713168->139828333713504 139828333713840 activation_41: Activation 139828333713504->139828333713840 139828333713896 res4f_branch2b: Conv2D 139828333713840->139828333713896 139828333714232 bn4f_branch2b: BatchNormalization 139828333713896->139828333714232 139828333714568 activation_42: Activation 139828333714232->139828333714568 139828333714624 res4f_branch2c: Conv2D 139828333714568->139828333714624 139828333714960 bn4f_branch2c: BatchNormalization 139828333714624->139828333714960 139828333714960->139828333715296 139828333715352 activation_43: Activation 139828333715296->139828333715352 139828333686736 res5a_branch2a: Conv2D 139828333715352->139828333686736 139828333741840 res5a_branch1: Conv2D 139828333715352->139828333741840 139828333740384 bn5a_branch2a: BatchNormalization 139828333686736->139828333740384 139828333740720 activation_44: Activation 139828333740384->139828333740720 139828333740776 res5a_branch2b: Conv2D 139828333740720->139828333740776 139828333741112 bn5a_branch2b: BatchNormalization 139828333740776->139828333741112 139828333741448 activation_45: Activation 139828333741112->139828333741448 139828333741504 res5a_branch2c: Conv2D 139828333741448->139828333741504 139828333742232 bn5a_branch2c: BatchNormalization 139828333741504->139828333742232 139828333742568 bn5a_branch1: BatchNormalization 139828333741840->139828333742568 139828333742848 add_15: Add 139828333742232->139828333742848 139828333742568->139828333742848 139828333742904 activation_46: Activation 139828333742848->139828333742904 139828333742960 res5b_branch2a: Conv2D 139828333742904->139828333742960 139828333769728 add_16: Add 139828333742904->139828333769728 139828333743296 bn5b_branch2a: BatchNormalization 139828333742960->139828333743296 139828333743632 activation_47: Activation 139828333743296->139828333743632 139828333743688 res5b_branch2b: Conv2D 139828333743632->139828333743688 139828333715408 bn5b_branch2b: BatchNormalization 139828333743688->139828333715408 139828333769000 activation_48: Activation 139828333715408->139828333769000 139828333769056 res5b_branch2c: Conv2D 139828333769000->139828333769056 139828333769392 bn5b_branch2c: BatchNormalization 139828333769056->139828333769392 139828333769392->139828333769728 139828333769784 activation_49: Activation 139828333769728->139828333769784 139828333769840 res5c_branch2a: Conv2D 139828333769784->139828333769840 139828333771968 add_17: Add 139828333769784->139828333771968 139828333770176 bn5c_branch2a: BatchNormalization 139828333769840->139828333770176 139828333770512 activation_50: Activation 139828333770176->139828333770512 139828333770568 res5c_branch2b: Conv2D 139828333770512->139828333770568 139828333770904 bn5c_branch2b: BatchNormalization 139828333770568->139828333770904 139828333771240 activation_51: Activation 139828333770904->139828333771240 139828333771296 res5c_branch2c: Conv2D 139828333771240->139828333771296 139828333771632 bn5c_branch2c: BatchNormalization 139828333771296->139828333771632 139828333771632->139828333771968 139828333772024 activation_52: Activation 139828333771968->139828333772024 139828333772080 avg_pool: AveragePooling2D 139828333772024->139828333772080 139828333772248 flatten_1: Flatten 139828333772080->139828333772248 139828333772360 fc6: Dense 139828333772248->139828333772360

What you should remember:

  • Very deep "plain" networks don't work in practice because they are hard to train due to vanishing gradients.
  • The skip-connections help to address the Vanishing Gradient problem. They also make it easy for a ResNet block to learn an identity function.
  • There are two main type of blocks: The identity block and the convolutional block.
  • Very deep Residual Networks are built by stacking these blocks together.

References

This notebook presents the ResNet algorithm due to He et al. (2015). The implementation here also took significant inspiration and follows the structure given in the github repository of Francois Chollet:

This website does not host notebooks, it only renders notebooks available on other websites.

Delivered by Fastly, Rendered by OVHcloud

nbviewer GitHub repository.

nbviewer version: d25d3c3

nbconvert version: 5.6.1

Rendered (Fri, 21 Nov 2025 11:36:00 UTC)